
MQCC: Maximum Queue Congestion Control for

Multipath Networks with Blockage

Scott Pudlewski, Brooke Shrader, Laura Herrera, Nathaniel M. Jones, Andrew P. Worthen

Massachusetts Institute of Technology

Lincoln Laboratory

e-mail: {scott.pudlewski, brooke.shrader}@ll.mit.edu

Abstract—This paper presents a transport layer protocol for
multi-path networks with blockage. Using urban SATCOM as
an example, we see from data taken from a 2006 measurement
campaign that these blockages are generally on the order of 1−5

seconds in length and the links are blocked approximately 33%
of the time. To compensate for this type of impairment, we have
developed a multipath IP overlay routing algorithm, a random
linear coding reliability scheme, and a maximum-queue-based
(MQCC) congestion control algorithm.

MQCC uses average buffer occupancy as a measure of the
congestion in a network (as opposed to packet loss or round trip
time (RTT)) and updates the transmission rate of each source to
avoid network congestion. This allows us to design a congestion
control algorithm that is independent of the channel conditions
and can be made resilient to channel losses. The reliability scheme
uses selective negative acknowledgments (SNACKs) to guarantee
packet delivery to the destination. We show through simulation
that we can approach the optimal benchmark in realistic lossy
blockage channels.

I. INTRODUCTION

Many high frequency wireless links experience blockage

due to physical obstructions. One common example of this is

mobile satellite-terrestrial links, which can be modeled using

a Markov process as an on-off blockage channel [2]. In this

example, the blockage is due to the terrestrial nodes moving

near and around obstructions that intermittently block the line-

of-sight link to the satellite. This causes blockages in the

channel that vary in time based on the speed on the vehicle

and the environment. For example, for a vehicle moving in an

urban environment, the passing buildings can cause blockages

on the order of seconds in length [2].

Especially challenging are recurring link blockages that last

on the order of seconds. Forward error correction schemes

used to combat small-scale fading would impose large delays

when applied to longer outages. On the other hand, persistent

outages lasting minutes or longer are handled by current

routing protocols. This includes routing protocols developed

for the delay/disruption-tolerant networking paradigm, where a

communication link between a pair of nodes only exists occa-

sionally, as governed by the node pairs’ inter-contact time. By
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contrast, in our scenario, communication links between pairs

of nodes are persistent, but the link is sometimes blocked. Our

focus is on link blockages that span seconds, as determined

by the speed of the mobile and size of the obstruction. This

problem is not addressed by current techniques.

We argue that the best way to combat blockages at these

timescales is at and above the network layer. In [3], we

demonstrate an approach consisting of three components.

• Concurrent routing over multiple paths which provides

robustness to blockages on any single link or path coupled

with end-to-end block coding;

• queue-length-based congestion control and a loss recov-

ery scheme that uses selective NACKs; and

• an IP-overlay implementation.

In this work, we focus on the second item. Specifically,

we develop a multipath queue-length-based congestion control

algorithm designed to perform well in networks with link

blockage. By taking advantage of the overlay implementation

scheme described in [3], we can explicitly measure the queue

length of a subset of nodes in the network. We then use

these queue lengths to develop a protocol that can be shown

to distributively solve a sum-network-utility maximization

problem.

The remainder of the paper is structured as follows. In

Section II, we discuss related work. Section III introduces

the MQCC congestion control protocol, while Section IV

introcudes the selective negative acknowledgment reliability

protocol. We evaluate the performance in Section V, and

finally conclude the paper with Section VI.

II. RELATED WORK

Most existing transport layer congestion control protocols

fall into one of three categories.

• Loss Based Congestion Control. The vast majority of

congestion control algorithms today use packet losses as

an indication of congestion. This includes TCP Reno [4],

Compound TCP [5], and TCP Cubic [6], among many

others. In all of these cases, the sender and receiver use

an ACK based feedback mechanism to inform the sender

whether a packet is or is not received at the destination.

Whenever a packet is not received, the sender assumes

that a queue somewhere in the network has overflowed.



Since queue overflow is an indication of congestion, the

source node decreases the window size (or send rate) to

compensate. In wired networks, since packet loss rates

due to bit errors are relatively rare, this approach works

very well. Unfortunately, higher error rates in wireless

networks result in a great deal of “false” congestion

indications, resulting in underutilization of the network

[4].

• Delay Based Congestion Control. The time it takes a

packet to traverse the network from source to destination

can be used as an indication of the overall network con-

dition [7], [4]. In TCP Vegas [7], the difference between

the actual and expected (i.e., propagation) delay is used

as an indication of the queue length at the bottleneck link.

Indeed, in [8], it was shown that this update can be proven

to converge to an optimal weighted-proportional-fair rate

allocation throughout the network. The main drawback

for our blockage scenario is that, because of the length

of the outages, it is difficult or impossible to accurately

measure any end-to-end metric.

• Explicit Congestion Notification (ECN). ECN based

systems use explicit congestion messages between a

router experiencing congestion and the sender to indicate

congestion. By separating the channel loss behavior and

the congestion loss behavior, a congestion control algo-

rithm can deal with any congestion events while allowing

other techniques to handle channel losses. However, for

an ECN based system to work, every router that could

experience congestion must be able to signal congestion

to the source. While we can control a subset of nodes,

there will still exist legacy devices that we are unable to

modify.

In addition to these traditional approaches, there are a

couple of newer approaches that are relevant to lossy wireless

networks. Multipath TCP (MPTCP) schemes [9], [10] explore

the design and implementation of multipath versions of a loss-

based TCP protocol. The authors or [10] design an MPTCP

protocol specifically with fairness in mind, and define two

goals of the protocol.

1) The throughput of the multipath TCP flow should be at

least equal to the throughput of a single-path TCP flow

choosing the best (i.e., highest throughput) path.

2) Regardless of the number of paths chosen, the multipath

flow must not take more capacity on any combination

of paths than if it were a single-path TCP flow choosing

the best path.

Essentially, MPTCP should always be at least as good as

single-path TCP, and it should not compete with other flows

any more aggressively than an equivalent “best case” single

path flow would. To accomplish this, the authors introduce

a loss-based congestion control algorithm that controls the

window sizes for each path based in part on the total window

size for all paths used by the connection. In this work, we look

at some of the same concepts as MPTCP but in a network

where we can not rely on traditional feedback metrics.

In [11], the authors introduce network coding as an error

correction scheme at the transport layer. They accomplished

this by implementing a new “network coding layer” below

the transport layer. They then demonstrate that it is often

advantageous to use received degrees of freedom to guarantee

the delivery of packets to the destination. Since the network

coding layer only accounts for lost packets, they implement

the protocol with TCP Vegas [7] for congestion control.

A primary advantage of [11] is that it allows the source to

trade packet loss for RTT delay in a way that is transparent

to the TCP protocol. However, this benefit depends on two

assumptions. First, the source needs to be able to predict the

correct amount of redundancy for optimal performance. In

blockage channels, this is nearly impossible to do in the short

term. Second, because SATCOM blockage events are highly

correlated in time, the single path error correction scheme may

not perform well.

Finally, loss tolerance TCP (LT-TCP) as presented in [12] is

an example of a system that attempts to “fix” TCP to work with

lossy wireless networks using existing techniques. The authors

have taken the view that because packet losses are unreliable

as a congestion indicator, they should never be acted upon as a

congestion event. Instead, they assert that explicit congestion

notification (ECN) is the more appropriate response. Similar

to the network coding work above, they then use forward error

correction (FEC) to correct for losses in the network.

The primary approach of LT-TCP is to first predict the loss

rate and implement proactive FEC bytes to compensate for

expected bit errors. If there are still errors at the receiver

the source will then send reactive FEC bytes to allow the

destination to decode the packets. This is similar in principal

to the network coding scheme in [11]. While such an approach

can often work very well, it is again not appropriate for

blockage networks. First, the blockage lengths are long enough

that “coding over them” using traditional FEC and interleaving

techniques would cause significant delays. These techniques

were designed for loss durations on the order of milliseconds,

where blockages are on the order of seconds. Second, it is

difficult to accurately predict the loss rate in any mobile

wireless network, particularly a satellite blockage network

whose blockages depend on line of sight impairments.

III. MAXIMUM QUEUE CONGESTION CONTROLLER

(MQCC)

Here we present the maximum queue congestion controller

(MQCC) which uses both the maximum measured queue

lengths and round trip time (RTT) measurements to prevent

congestion. We present each phase of the congestion controller

individually, justifying why two phases are needed for realistic

incremental deployment. Finally, we show that the end-to-end

congestion controller can be viewed as the optimal solution to

a sum-network-utility maximization problem.

A. Network Model

For this work, the focus is on mobile tactical ground

vehicles, which have already been deployed with IP routers



installed. Since changing this hardware would be extremely

expensive, we have designed this protocol to be able to

be implemented as an IP overlay network, where a small

number of key nodes have been “upgraded” to include the

MQCC interface and software. These overlay nodes will take

responsibility for forcing traffic to use specific relay nodes,

allowing for (at least partially) disjoint paths. These overlay

nodes also allow us to measure and control the transmission

rate of the packets at key points in the network, allowing us to

collect information from within the network even in paths that

contain nodes (such as satellite hops) that are very challenging

to upgrade.

We therefore propose a two-phase system. For end-to-end

congestion control, we define a system where each overlay

node reports its queue size to the source node, and the the

source uses these measurements to determine the presence

or absence of congestion in the network. By using explicit

measurements, we can avoid the ambiguity of accounting for

large numbers of missing packets. For local rate control (i.e.,

the capacity of a link between two overlay nodes), we use

an RTT based algorithm. We define each of the components

individually below, and we show that the end-to-end rate

control algorithm is optimal in terms of proportional fair utility

maximization.

B. Source-based Overlay Congestion Control

In MQCC, the packet transmission rate at each source is

updated using the measured maximum queue length Q̃s as an

indication of congestion. Specifically, we update the source

rate according to

xs(t+ 1) =



























xs(t) + k
γ−

Q̃s
if Q̃s < γ−,

xs(t)− k
Q̃s

γ+
if Q̃s > γ+,

xs(t) else,

(1)

where xs(t) is the transmission rate as source s at time t, 0 <

k ≤ 1 is a user defined constant used to regulate how fast the

rate adjusts at a source, and 0 < γ+ and 0 < γ− are constants

representing the maximum and minimum number of bits that

will be maintained in the sum of all queues along any single

path. While we will prove that this update achieves optimal-

sum-utility rate allocation in Section III-D, we can easily see

that such an update also makes intuitive sense. Assuming that

we want to keep between γ+ and γ− packets in the bottleneck

queue, (1) states that we should decrease the data rate if we

have more than γ+ packets, and we should increase the data

rate if we have less than γ− packets. At steady state, assuming

perfect measurement, the length of the maximum queue length

in the network will be between γ+ and γ−.

Q̃s is defined as

Q̃s = max
i∈N (s)

Qi (2)

where Qi is defined as the queue length at node i, N is the set

of all nodes in the network and N (s) is the set of nodes in N

that participate in the flow from source s. Qs is the maximum

queue used by flow s, and is found through message passing

to the source.

C. Local Capacity Estimation

It is assumed in (2) that the network consists entirely of

overlay nodes, and each of these nodes is able to report a queue

occupancy value to the source. Realistically, the bottleneck

link could be in the underlay network at a node that we can

not directly measure. To compensate for this, we implement

a second rate control algorithm between each two overlay

neighbors in the network. We refer to this as a “capacity

estimation” algorithm because the goal of this algorithm is

to determine the capacity of the hyperedge between each pair

of overlay nodes assuming that each node may be receiving

data from- and sending data to more than one other node.

The key differences between this and the end-to-end algo-

rithm described in (1) are:

• The local capacity estimation algorithm is run per logical

link and does not distinguish which source (or path) any

data belongs to.

• The local algorithm must estimate the queues along the

underlay path.

• This algorithm is run independently at each overlay

node where data is being transmitted using the overlay

network.

The capacity of each overlay link is updated using

cl(t+ 1) =











cl(t) + κ if cl(t)(Dl(t)− dl) < α

cl(t)− κ if cl(t)(Dl(t)− dl) > β

cl(t) else,

(3)

where cl(t) is the capacity in packets per second, κ is some

constant number of packets per second, Dl(t) is the measured

RTT for link l at time t, dl is the propagation delay on link l

and α and β are constants with dimension of packets. Because

the nodes are mobile and the paths are constantly changing,

the propagation delay dl is periodically measured using small,

high priority probe packets. The update described in (3) states

that the rate cl of link l at time t+1 is increased or decreased

by κ packets per second based on whether cl(t)(Dl(t) − dl)
is greater than β or less than αl. Interestingly, it can easily

be shown that cl(t)(Dl(t)− dl) is the number of backlogged

packets on link l, while α and β, β > α represent some range

of ideal buffer occupancy.

D. Optimality of the End-to-End Congestion Controller

To demonstrate the optimality of (1), we first need to define

the network model. We represent the network as a set N of

nodes, and the set L represents the set of all links in the

network. We indicate the set of source nodes as S, with S ⊆
N . We define L(s) as the set of links in L used by source s.

For each link l, let S(l) = {s ∈ S | l ∈ L(s)} be the set of

sources whose traffic traverses link l along at least one path.

By definition, l ∈ L(s) if and only if s ∈ S(l).



We would like to find a distributed source update algorithm

that will maximize some function U(xs), which is a non-

decreasing utility function of the data rate xs at source s.

Similar to [8], we begin by defining an optimization problem

Maximize
∑

s∈S

U(xs)

Subject To:
∑

s∈S(l)

xs ≤ cl ∀l ∈ L

xs ≥ 0 ∀s ∈ S,

(4)

which states that we would like to maximize the sum of U(xs)
over all sources s given a capacity constraint cl on each link

l.

Following the same formulation as [8], [13], we can then

find the Lagrangian of (4), as:

L(x, λ) =
∑

s∈S

U(xs)−
∑

l∈L

λl





∑

s∈S(l)

xs − cl





=
∑

s∈S



U(xs)− xs

∑

l∈L(s)

λl



+
∑

l∈L

λlcl,

(5)

where the relaxation variable λl represents the penalty or

price for violating the capacity constraint. The Lagrange Dual

function can then be defined as

g(λ) = max
x

L(x, λ)

= max
x





∑

s∈S



U(xs)− xs

∑

l∈L(s)

λl



+
∑

l∈L

λlcl





=
∑

s∈S

max
x



U(xs)− xs

∑

l∈L(s)

λl



+
∑

l∈L

λlcl.

(6)

Based on the dual formulation in (6), the optimal value of

xs will be the value that uniquely solves

max
x



U(xs)− xs

∑

l∈L(s)

λl



 . (7)

As long as U(xs) is differentiable over all values of xs, x∗
s is

defined as the value of xs such that

dU(xs)

dxs

= λs, (8)

where λs =
∑

l∈L(s)

λl. Finally, we note that λs can be

interpreted as

λs =
bs

cs
, (9)

where bs, defined as

bs = max
p∈P(s)

∑

i∈N (p)

Q
s,p
i , (10)

is the number of packets queued along the most congested

path for source s, N (p) is the set of nodes in path p, and

P(s) is the set of paths used by source s. cs is the bottleneck

capacity between the source and destination for source s. For

a utility function
γ

ρs
log(xs), (11)

which can be interpreted as weighted proportional fairness

where the weights are the desired queue length (γ) divided

by the ratio of the bottleneck link RTT to the end-to-end RTT

for source s (ρs), we can now find

x∗
s =

γ

ρsλs
=

γcs

ρsbs
, (12)

which states that the optimal data rate is the capacity times

the ratio of the number of packets we would like in the queue

(γ) divided by the weighted length of the queues.

Ideally, we would be done here. however, the above analysis

assumes that we know both bs and cs exactly. Realistically,

whatever we have for bs is a delayed estimate based on values

reported by the network, and cs is unknown. However, if we

rewrite (12) as
x∗
s

cs
=

γ

ρsbs
, (13)

two things become very clear. First, to achieve x∗
s = cs, we

need γ = ρsb
s. Second, and perhaps more important, the

relationship between x∗
s and cs is the same as that between γ

and ρsb
s.

Finally, we note that, in general, bs is very difficult to

measure accurately since it involves measurements from every

node along the path. Therefore, instead of using bs, which is

the sum of all queues along a path, we use ρsb
s
max which is

the maximum queue length along a path weighted by ρs. The

measurement is weighted by ρs because the local capacity

update between overlay nodes, defined in (3), is weighted

proportional fair [14], resulting in the additional delay factor

in the rates and therefore the queue lengths. Since a path can

have at most one bottleneck link [14], this will in general give

an answer that is close to ρsb
s.

IV. SELECTIVE NEGATIVE ACKNOWLEDGMENT (SNACK)

BASED RELIABILITY

Because MQCC is a intended to be a replacement for

TCP, it must guarantee end-to-end reliability of packets. To

accomplish this, we introduce two concepts into MQCC;

Random Linear Coding (RLC) and Selective Negative AC-

Knowledgments (SNACKs).

A. Random Linear Coding (RLC)

We use random linear coding for both error correction and

to efficiently utilize multiple paths. Random linear coding

is carried out as follows. Data packets arriving at a source

node are grouped into generations or blocks, where each

generation contains K packets. The source node will form and

transmit coded packets, which are random linear combinations

of packets from the same generation. The coefficients of

each random linear combination are chosen randomly and



uniformly from a large finite field and the coefficients mapping

the coded packet to the original data packets are included in

the header.

The destination will be able to decode the generation if K

or more coded packets arrive, provided that K of the received

coded packets are linearly independent. The probability that

any K coded packets received by the destination are linearly

independent can be made large if the field size is chosen

sufficiently large. Here, coding is performed over the finite

field GF(256), which is shown in [15] to be sufficiently large

in most cases. For more details on the implementation of RLC

in MQCC, the reader is referred to our paper [3].

B. Selective Negative Acknowledgments (SNACKS)

While the RLC scheme guarantees that the original packets

can be decoded if enough coded packets reach the destination,

we still need to explicitly guarantee that enough packets are

received. For an efficient method for accomplishing this, we

make the following observations about blockage channels.

1) Packet losses are likely to be highly correlated in time.

2) It is likely that some paths will be available and others

will not, but less likely that all or none of the paths will

be available (though these last two conditions are indeed

possible).

3) Traditional ACK schemes will be inefficient due to the

high time-correlation of losses, as well as the difficultly

in relaying ACKs along blockage paths.

Based on these observations, we implement a Selective Neg-

ative ACKnowledgment (SNACK) reliability scheme. Specif-

ically, the destination has the ability to request coded packets

from the source with a negative acknowledgment (NACK).

Additionally, because we expect the losses to be correlated in

time, we allow the NACK to request a series of coded packets

from a series of generations as opposed to a single packet

per generation. For example, if a single path out of three is

blocked for generations 10 through 20, the destination has the

ability to ask for K
3 packets from all of the missing generations

with a single request, greatly reducing overhead1. We refer

to these as selective negative acknowledgments (SNACKs).

Finally, while the destination will send SNACKs over multiple

paths, it is always possible that these packets will also be lost.

In our implementation, the destination retries the SNACKs at

periodic intervals until it receives enough coded packets to

decode the original packets.

V. PERFORMANCE EVALUATION

To validate the performance of MQCC with SNACK-based

reliability, we use both simulation and optimization analy-

sis. The simulation tests are done using Riverbed modeler

(formerly OPNET modeler) [16] to compare performance of

MQCC with TCP Reno with SACK [17]. TCP Reno was

chosen as a comparison primarily because it is the default

1In the case where all paths are blocked, the generations are numbered
sequentially allowing the destination to realize that there were losses when
the next successful packet is received.

protocol used in the DoD tactical networks we are study-

ing. However, we agree that as the problem with TCP over

wireless networks is well known, there are many academic

and experimental protocols that have been designed for this

specific purpose. While it is possible that some of them

may also work significantly better than TCP SACK in a

blockage environment, building and testing them all is at best

impractical. To compensate for this, we provide analysis on

the optimal rate allocation for a given blockage network, and

show that MQCC performs very close to this optimal solution.

A. Optimization Analysis

To help determine the performance of MQCC, we first

define the optimal solution of the problem defined in (4) both

with and without blockage.

1) Perfect Channels: We begin with the optimization prob-

lem defined in (4) which maximizes the rate utility as con-

strained by link capacity2. We start by calculating the optimal

rate allocation for MQCC, which can be defined by the

optimization problem

Maximize
∑

s∈S

γ

ρs
log(xs)

Subject To:
∑

s∈S(l)

xs ≤ cl ∀l ∈ L

xs ≥ 0 ∀s ∈ S,

(14)

As described in Section III-D, the MQCC algorithm is de-

signed as a distributed solution to this problem, so an initial

evaluation of MQCC is whether it solves (14). Calculating the

optimal value allows us to calculate the amount of overhead

imposed by MQCC, which allows us to determine the cost of

the algorithm. These results are presented in Section V-B.

2) Blockage Channels: Next we modify the benchmark

formulation to account for blockage channels. We begin by

rewriting the optimization problem in (4) as

Maximize
∑

s∈S

γ

ρs
log(rs)

Subject To: Rr ≤ c

r � 0,

(15)

where r is the vector of source data rates and c is the vector

of link capacities. R is the routing matrix, and is defined as

Ri,j =

{

1, if j ∈ S(i)

0, else.
(16)

Blockage will have two effects on the optimization problem

in (15). First, if any link on a path is blocked, then the amount

of data received along that path will be 0. We represent this

by a vector b ∈ {0, 1}|S| where bs is 0 if at least one link

used by source s is blocked, and 1 otherwise. Second, we note

that source s will not compete for traffic on any link after the

2Based on this formulation, the rate is limited by the lowest capacity path.
This was a design decision of the protocol, and future work will generalize
this system to control the rate of each path independently.



first blocked link. We take this into account by defining a time-

varying routing matrix that is dependent on the blockage state,

defined as

Ri,j(t) =

{

1, if j ∈ S(i, t)

0, else.
(17)

where S(l, t) = {s ∈ S | l ∈ L(s, t)} and L(s, t) is the set of

links used by source s at time t.

We can then define the benchmark optimization problem for

blockage channels as

Maximize
∑

s∈S

γ

ρs
log(rs(t))

Subject To: R(t)r(t) ≤ c

r(t) � 0,

(18)

where r(t) is the rate vector at time t. We find the throughput

from the rate vector using

x = E[b(t) · r(t)]. (19)

In practice, we solve (18) iteratively for each change in

the channel state. In the next section, we use a simulation

implementation of the MQCC protocol using the algorithm

defined in (1) to determine how well MQCC performs.

B. Simulation Results

To test the performance of MQCC, we have simulated two

test topologies with controlled blockage patterns. Each of

these topologies tests a specific performance characteristic. We

then implement a realistic topology using measured SATCOM

blockage data to compare the performance of MQCC with

SACK to existing TCP implementations.

1) Single-Path Simulation: The first topology is shown in

Fig. 1, where four flows are defined with a single path for

each flow. Flow 0 and Flow 1 are simple single hop flows that

are through the satellite link from Node 1 to Nodes 2 and 3

respectively. Flow 2 is from Node 1 to Nodes 5 through the

satellite and Node 4, and Flow 3 is from Node 4 to Node

5 directly. The link rates are set at 3 Mbps for the satellite

uplink, 5 Mbps for the satellite downlink, and 1.5 Mbps for

the terrestrial link. The purpose of this test is to see how the

protocol works when the bottleneck links are at different points

in the network, and to confirm that the protocol achieves the

expected throughput.

First, we test the performance with blockage links. The

results for this test are shown in Fig. 2, which shows the

throughput for each of the four flows in Fig. 1 for MQCC

(in black) and TCP (in red). For comparison, we also show

the optimal rate from the calculation in (18) in blue. There are

a couple of interesting observations from this plot.

• MQCC is close to optimal for Flows 0 and 1.

• MQCC sends more than the optimal for Flow 2 and sig-

nificantly less for Flow 3. This is mostly due to queuing

at Node 4. Whenever Flow 3 experiences blockage, it

will not be transmitting packets from Node 4 to Node

5, allowing Flow 3 to use all of the available capacity
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Fig. 1: Topology for single path throughput test.
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Fig. 2: Throughput of MQCC and TCP assuming blockage

channels.

on that link. However, since there is a queue at Node 4,

there are times when Flow 2 is blocked but Node 4 still

has packets to send. This is not accounted for in (18),

and should slightly increase the throughput on Flow 2 at

the expense of Flow 3.

• TCP is able to transmit very few packets over the block-

age links. This is not surprising, since TCP will view each

blockage event as a buffer overflow congestion event and

decrease the throughput accordingly.

• TCP achieves nearly 50% more throughput than MQCC

at Flow 3. However, this is due to TCP unfairly sharing

capacity between Flow 2 and Flow 3.

To better understand the performance and fairness of

MQCC, we also ran tests with the same topology but with

perfect channels. These results are shown in Fig. 3. Again,

there are a couple of interesting observations from the figure;

• MQCC transmits slightly less than the optimal rate along

all paths. We quantify that gap between optimal and

achieved below.

• TCP is very unfair to Flow 2, with Flow 3 achieving

nearly 90% of the capacity between Nodes 4 and 5.

To analyze fairness, we used Jain’s fairness index [18] to
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Fig. 3: Throughput of MQCC and TCP assuming perfect

channels.

0 500 1000 1500 2000 2500 3000 3500

Control Traffic

Buffer Overflow

IP/UDP Headers

MQCC Headers

Algorithm Loss

Goodput

MQCC Throughput Distribution

Data Rate (kbps)

0.4%

3.3%

5.8%

6.3%

83.3%

0.8%

Fig. 4: Throughput distribution for MQCC with perfect chan-

nels.

compare the fairness between directly competing flows using

MQCC and TCP. For MQCC, we get a fairness rate of 1.00

between Flow 0 and Flow 1, and 1.00 between Flow 2 and

Flow 3. For TCP, we instead get 0.97 between Flow 0 and Flow

1, and only 0.62 between Flow 2 and Flow 3. This is because

the vast difference in delay between the satellite links and the

terrestrial links greatly favors the much faster terrestrial link,

resulting in far more packets being sent for Flow 3. Because

Flow 3 is sending so few packets, Flow 0 and Flow 1 take

advantage of the additional throughput in the satellite link and

transmit far more packets. The end result is that, while TCP

may achieve a higher overall throughput than MQCC, it is at

the cost of fairness in the network.

We also analyzed the difference between MQCC and the

optimal benchmark without blockage and present the results

in Fig. 4, which breaks down the percentage of bits transmitted

by goodput, overhead, and losses. We first note that 83.3% of

the transmitted data is relevant data, and the other 16.7% is

made up of both overhead and inefficiencies of the protocol.

Out of the 16.7%, the two largest components are the MQCC

headers and the algorithm losses. While it is beyond the scope

of this initial prototype, much of the header data could be

compressed resulting in some savings in future versions of

MQCC. In contrast, the algorithm losses are due to the rate

dynamics of the MQCC congestion control algorithm. While

this loss can be decreased, there will be a cost in the percentage

of packets lost due to buffer overflow which may outweigh the

benefits.
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Fig. 5: Throughput distribution for MQCC with blockage

channels.
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Fig. 6: Throughput with no blockage of the four path topology

shown in Fig. 1.

We see a similar pattern in Fig. 5, which shows the deviation

from the optimal benchmark when the links have blockage. In

this case, the majority of losses are due to the blockage itself,

as would be expected. Like the unblocked case, algorithm

losses account for a small deviation from the optimal rate. One

interesting thing to note is that the number of packets we lose

to buffer overflow is much greater with blockage links. This

is because blocked links result in delayed queue information

at the sending node, resulting in the source not decreasing the

rate fast enough.

With the exception of blockage, the primary cause of

throughput loss in MQCC is the MQCC algorithm itself,

which accounts for 6.3% of the overall throughput in the

unblocked case, and 5.5% of the throughput with blockage

channels. To help understand the this, we show the transient

characteristics of MQCC in Fig. 6. Similar to nearly every

congestion control algorithm [4], we see that there is a periodic

nature to the rate curves. Flows 0 and 1 oscillate between 635

kbps and 1272 kbps. This large fluctuation is primarily due

to the time required to measure reliable information about the

bottleneck link (in this case the satellite uplink) which we can

not measure directly. Because the blockages can last for many

seconds, the algorithm can not increase the data rate too fast,

or risk overflowing some links. While it is necessary for this

type of blockage network, this large oscillations are the main

disadvantage of a protocol like MQCC.
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2) Multi-Path Simulation: While MQCC will work when

restricted to a single path, it is primarily a multi-path protocol.

In this section, we describe two test topologies used to evaluate

MQCC with multiple paths. We simulate the protocol in

each of these topologies and compare the performance to the

optimal benchmark.

The first topology, as shown in Fig. 7 (including the dotted

paths), has two flows with three paths each. Two of the paths

of each flow overlap with that of the other flow. For this

topology, the bottleneck is the satellite uplink, which will

limit any single path to a maximum of 500 Kbps. Since all

paths experience identical conditions, the optimal allocation

is to evenly split the capacity between the two flows. The

second topology (without including the dotted paths in 7) is

an unbalanced topology in which one flow is using three paths,

but the second flow is only using two. Again, the bottleneck

link is the satellite uplink from Node 4 that is shared by the

two flows.

We tested the topology in Fig. 7 both with and without the

path shown with the dotted line. in simulation to see whether

the two links fairly shared the bandwidth. These results are

shown in Fig. 8 and Fig. 9. We see that for both the balanced

and unbalanced topologies, the achieved throughput is fair

(with Jain’s index above 0.99) both with and without blockage.

3) Simulation Demo: Finally, we examine the entire system

including the SNACK functionality described in Section IV.

For comparison, we are using standard TCP Rome [17] as

well as TCP CUBIC [6]. The topology in Fig. 10 shows a

single multi-path MQCC flow (designated Flow 0) between

the cluster on the left and the cluster on the right. Each

cluster is fully connected with 1.5 Mbps transmit rate at each

node. Each satellite uplink is 3 Mbps point-to-point, and the

downlink is broadcast at 5 Mbps. The flow is divided into

three paths, each of which must go through the satellite node.

Unlike earlier tests, the OSPF routing protocol between nodes

is allowed to attempt to reconverge based on perceived link

outages due to blockage. Due to space, we do not show the

Balanced Topology Unbalanced Topology
0

100

200

300

400

Throughput per Path for 
Multipath Topologies

M
ea

n 
T

hr
ou

gh
pu

t (
kb

ps
)

 

 

Node 1
Node 2

Fig. 8: Throughput of the topologies shown in Fig. 7 with

perfect channels.
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Fig. 9: Throughput of the topologies shown in Fig. 7 with

blockage channels.

second flow (Flow 1) that is transmitted from the cluster on

the right to the cluster on the left, but it follows a very similar

pattern.

We show the throughput obtained by MQCC and both

flavors of TCP in Fig. 11. As expected, MQCC achieves

far more than either TCP Reno or TCP CUBIC. Indeed, it

achieves far more than 3 times the rate achieved by either

flavor of TCP, showing that even if we managed to set up

three TCP flows over three diverse paths, it would not achieve

the throughput obtained by the MQCC flow. In addition, all

three results show the throughput with guaranteed reliability.

In TCP, this is achieved using Selective ACK, and in MQCC

using SNACKs as described in Section IV. While the OSPF

reconvergence makes calculating an optimal benchmark for

MQCC very difficult, we know that the limiting link in this

scenario is the terrestrial link at the source, which is 750

kbps for each path (1.5 Mbps split between the two links).

We can see in Fig. 11 that we achieve roughly 60% of that

capacity without taking blockage into account. The blockage

profiles used in this scenario are based on measurements

described in [2], and result in ≈ 70% availability of at

least one of the bottleneck links. While this is clearly only

a rough approximation of the optimal benchmark capacity

of this system, we see that MQCC is able to achieve very

good performance in a scenario where traditional loss-based

or delay-based congestion control algorithms can not perform

well.
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topology shown in Fig. 10.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we build of our other work in [3] and

present the Maximum Queue Congestion Control (MQCC)

protocol and Selective Negative ACKnowledgment (SNACK)

reliability protocol for multipath networks with blockage. We

demonstrate that MQCC can be viewed as the distributed

solution to a convex optimization problem, and that the explicit

queue values can be viewed as the penalty in the optimization

solution. We demonstrate the performance of MQCC and

SNACKs using network simulation, and show that it performs

far better than traditional TCP in terms of fairness, as well as

throughput in blockage channels.

We are currently implementing this protocol in an em-

ulation environment using the Extendable Mobile Ad-hoc

Network Emulator (EMANE) [19] environment to show that

the protocol can work in real time on real hardware. We will

then transition the system to work on physical radios and

demonstrate that is can work over the air. We are also looking

at expanding the congestion indication to be path-specific so

the protocol will work multiple paths with disparate data rates.

Finally, we are using the ideas from [20] to expand the system

to automatically select overlay nodes based on the network

topology.
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